
Booster Gym: An End-to-End Reinforcement Learning Framework for
Humanoid Robot Locomotion

Yushi Wang1, Penghui Chen1, Xinyu Han2, Feng Wu2, Mingguo Zhao1

Abstract— Recent advancements in reinforcement learning
(RL) have led to significant progress in humanoid robot loco-
motion, simplifying the design and training of motion policies
in simulation. However, the numerous implementation details
make transferring these policies to real-world robots a challeng-
ing task. To address this, we have developed a comprehensive
code framework that covers the entire process from training
to deployment, incorporating common RL training methods,
domain randomization, reward function design, and solutions
for handling parallel structures. This library is made available
as a community resource, with detailed descriptions of its
design and experimental results. We validate the framework
on the Booster T1 robot, demonstrating that the trained
policies seamlessly transfer to the physical platform, enabling
capabilities such as omnidirectional walking, disturbance re-
sistance, and terrain adaptability. We hope this work provides
a convenient tool for the robotics community, accelerating the
development of humanoid robots. The code can be found in
https://github.com/BoosterRobotics/booster gym.

I. INTRODUCTION

In recent years, reinforcement learning (RL) has emerged
as a powerful technique for enabling humanoid robots to
learn complex behaviors and tasks, especially in the area of
locomotion. The ability to train motion policies in simulation
has significantly reduced the complexity of designing robotic
systems. However, translating these policies from a simulated
environment to real-world robots remains a challenge due
to a variety of factors, including the complexity of robot
dynamics, sensory noise, and hardware limitations. To ensure
successful deployment on physical robots, it is critical to
design simulation environments and training procedures that
promote the robustness and generalizability of the learned
policies.

To address this challenge, we present a fully integrated
code framework that encompasses the entire pipeline from
simulation training to real-world deployment. The framework
is compatible with customizable RL algorithms and reward
function configurations, and incorporates domain randomiza-
tion techniques to enhance policy robustness across varying
conditions. Additionally, we address the challenge of han-
dling parallel mechanical structures, which are common in
humanoid robot design. We validate the proposed framework
on the Booster T1 humanoid robot, demonstrating successful
policy transfer from simulation to hardware. The trained
policies enable the robot to execute tasks such as omnidirec-
tional walking, disturbance resistance, and terrain adaptation.
These results highlight the framework’s practical utility in

1Department of Automation, Tsinghua University, Beijing, China
2Booster Robotics Technology Co., Ltd, Beijing, China

Fig. 1: Training, testing, and deployment on Booster T1
across multiple environments. Upper Left: Training in Isaac
Gym. Upper Right: Cross-Simulation testing in MuJoco.
Lower Left: Verification in Webots via SDK. Lower Right:
Deployment in the real world.

real-world applications. By releasing this framework as an
open-source resource, we aim to provide a valuable tool
for the robotics community to accelerate the development
of humanoid robots.

Our key contributions include:

• A complete end-to-end solution for training and deploy-
ing RL-based locomotion policies, covering the entire
pipeline from simulation to real-world deployment.

• Comprehensive domain randomization for environ-
ments, robots, and actuators, designed to reduce the
sim-to-real gap and improve the robustness of trained
policies when transferred to physical robots.

• Easily modifiable environment and algorithm interfaces,
designed to allow researchers to efficiently adapt reward
functions, network architectures, and physical parame-
ters to meet diverse tasks.

II. RELATED WORKS

A. Humanoid Locomotion Control

With the rise of learning-based methods, the locomotion
control for humanoid robots has experienced rapid devel-
opment, achieving remarkable progress in multiple tasks.
Traditional approaches, such as Whole-Body Control (WBC)
[1] and Model Predictive Control (MPC) [2], rely on tracking

https://github.com/BoosterRobotics/booster_gym

handcrafted motion trajectories through model-based opti-
mization. While these methods are effective in generating
motions, they require extensive tuning of analytical models
and often perform suboptimally in real-world settings due to
external disturbances or inaccurate modeling. Additionally,
real-time optimization on the robot makes these methods
computationally intensive, necessitating workarounds like
reduced precision or offloaded computations, which come
with practical limitations.

In contrast, learning-based methods, particularly Rein-
forcement Learning (RL), have emerged as a powerful al-
ternative for humanoid locomotion control, offering minimal
modeling assumptions and enabling robots to acquire control
policies through interactions with uncertain environments.
This shift has facilitated the development of robust and
adaptive locomotion controllers, capable of handling com-
plex tasks such as standing up from diverse postures [3] or
navigating challenging terrains [4].

Due to the high cost and risks of real-world training,
policies are typically trained in simulated environments and
deployed zero-shot on physical robots, making sim-to-real
transfer a critical focus. Domain randomization has been
widely adopted to bridge the sim-to-real gap by enhancing
robustness through training policies across diverse simulated
parameters such as dynamics, sensor noise, and environments
[5]. However, excessive randomization may lead to overly
conservative policies and potentially hinder learning effec-
tiveness [6]. To address this, leveraging historical information
has emerged as a promising approach to infer task-specific
strategies and improve policy generalization. For instance,
methods like teacher-student distillation [7] and Rapid Motor
Adaptation (RMA) [8], [9] employ separated training stages.
In these approaches, an expert policy is first trained with
access to privileged information available only in simulation.
This knowledge is then distilled into a deployable student
policy, which relies solely on proprioceptive feedback and
infers latent parameters from historical information, enabling
real-time adaptation without explicit system identification.
Beyond these multi-stage methods, recent advancements
in end-to-end frameworks [10], [11] achieve performance
comparable to privileged expert policies while maintaining
real-world deployability. Additionally, some studies integrate
real-world data to refine modeling accuracy and reduce
reliance on excessive randomization, balancing simulation
efficiency with real-world applicability [12].

B. Tools for Humanoid Learning and Simulation

Deep reinforcement learning for robot is inherently com-
putationally intensive, as it relies on extensive interactions
between agents and their environments to explore effective
policies. To address this challenge, large-scale parallelization
has become a critical approach for reducing training time.
While traditional robotic simulators like MuJoCo and Webots
offer efficient and precise rigid body dynamics implementa-
tions, their reliance on CPU processing limits their ability
to achieve massive parallelism. The introduction of GPU-
accelerated physics simulators, such as NVIDIA Isaac Gym

[13], has transformed this landscape by enabling physics
simulation, reward and observation calculations, and neural
network training to be executed entirely on the GPU. This
innovation significantly accelerates training by supporting
thousands of parallel environments and minimizing data-
copying overhead [14]. Building on the success of Isaac
Gym, NVIDIA introduced Isaac Lab, which extends its
capabilities into a more general-purpose robotics simulation
platform with support for various tools. Isaac Lab demon-
strates significant potential for advancing robot simulation,
though it remains resource-intensive and currently has a
limited user base. Recently, several other GPU-accelerated
simulators, such as MuJoCo Playground [15] and Genesis
[16], have also emerged, further driving progress in the
field and expanding the range of available high-performance
simulation tools.

In this work, we select Isaac Gym as the training envi-
ronment due to its minimal yet sufficient implementation
for humanoid locomotion tasks and is widely adopted in
the robotics community. Although the PhysX physics engine
used by Isaac Gym has certain limitations, such as the lack of
support for closed kinematic chains and less accurate contact
force estimation, we address these challenges through careful
design choices to mitigate their impact. Additionally, we
perform cross-simulation testing in MuJoCo and Webots to
verify the generalization of the trained policies across differ-
ent environments, following a similar approach to [17]. This
multi-simulator strategy allows us to leverage the strengths
of each platform, balancing high-efficiency training with
lightweight and precise evaluation.

III. METHOD

A. Reinforcement Learning Formulation

We formulate the robot control problem as a Partially
Observable Markov Decision Process (POMDP) and solve
it via reinforcement learning (RL). The POMDP is defined
as M = ⟨S,A, p, r,O, γ⟩, where S and A are the state
and action spaces, p(s′|s,a) is the state transition function,
r(s,a) is the reward function, O is the observation space,
and γ ∈ [0, 1] is the discount factor. In the POMDP,
the agent only has access to partial information about the
complete state, which is consistent with information that can
be obtained from sensors on the robot in the real world.

The agent aims to learn a policy π(at|ot) mapping ob-
servations to action distributions to maximize expectation of
the discounted sum of future rewards:

J(π) = Eτ∼pπ

[∞∑
t=0

γtr(st,at)

]
, (1)

where τ = (s0,a0, s1, · · ·) represents a trajectory of the
agent sampled from the POMDP M under the policy π.

We adopt an asymmetric actor-critic (AAC) [18] architec-
ture with inconsistent observation spaces of the actor and
critic, and apply Proximal Policy Optimization (PPO) [19]
as the RL algorithm to trian the policy. At each iteration,
the agent collects trajectories by executing the policy, then

Environment

Actor

Critic

PD
Controller

Se
rie

s-
Pa

ra
lle

l

PPO
Pa

ra
lle

l-S
er
ie
s

Update

Training

Deployment

Fig. 2: An overview of the control architecture for training
and deployment. The actor and critic networks are optimized
using PPO in a simulated environment during training. The
actor network generates actions, which are subsequently
converted to control signals via a PD controller.

performs multiple steps of optimization using the same
trajectory. The policy gradient is expressed as:

∇θJ(πθ) = Eτ∼pπθold

[
πθ(at|ot)

πθold(at|ot)
Aπθold∇θ log πθ(at|ot)

]
,

(2)
where πθ(at|ot)

πθold (at|ot)
is the importance sampling weight to

address the discrepancy between the current policy πθ and
the policy πθold used to collect the data, and Aπθk is an
estimator of the advantage function under the policy πθk

calculated by Generalized Advantage Estimation (GAE) [20].
The basic loss function of PPO is defined as:

L(θ) = Lpolicy(θ) + cvalueLvalue(θ)− centropyH(πθ), (3)

where Lpolicy(θ) is the policy surrogate loss, Lvalue(θ) =
∥Vθ(st) − V̂ ∥2 is the value function error, H(πθ) is the
entropy regularization term to improve exploration, and
cvalue, centropy are coefficients. The surrogate loss Lpolicy(θ) is
clipped to constrain the magnitude of policy updates during
training:

Lpolicy(θ) = E
[
min

(
πθ(at|ot)

πθold(at|ot)
Aπθold ,

clip
(

πθ(at|ot)

πθold(at|ot)
, 1− ε, 1 + ε

)
Aπθold

)]
.

(4)

B. Problem Setup

In the asymmetric actor-critic architecture, the actor and
critic are represented by a policy network and a value
network parameterized by θ. The policy πθ(at|ot) deter-
mines the action at based on the partial observation ot. The
value network is trained to estimate the state value Vθ(st),
receiving the full state st, which is only available within the
simulator.

TABLE I: Summary of Observation Space.

Components Dims Actor Critic

Commands 3 ✓ ✓
Gait Cycle 2 ✓ ✓
Gravity Vector 3 ✓ ✓
Angular Velocity 3 ✓ ✓
Joint Position 12 ✓ ✓
Joint Velocity 12 ✓ ✓
Previous Action 12 ✓ ✓

Body Mass 1 ✓
Body Center of Mass 3 ✓
Base Linear Velocity 3 ✓
Base Height 1 ✓
Push Force 2 ✓
Push Torque 3 ✓

1) Observation Space: The proprioceptive observation of
the robot includes the base angular velocity ωt and the
gravity vector in the base frame gt measured by an IMU,
along with the joint positions qt and velocities q̇t obtained
from motor feedback. We construct the actor observation ot

by proprioceptive observation with noise, as well as the pre-
vious action at−1 and the velocity command (vx, vy, ωyaw)
for the omnidirectional walking task. Additionally, a gait
cycle (cos(2πft), sin(2πft)) is included in the observation
to guide the policy in learning a periodic walking gait [21],
where f is the gait frequency. For the standing gait, the
gait cycle is set to zero, enabling the policy to transition
seamlessly between standing and walking. The critic input
includes actor observation without noise and other privileged
information to improve the value estimation. The details of
observation are concluded in Table I.

2) Action Space: The policy outputs joint position offsets
as the action vector at. The desired joint positions for the
robot are determined by:

qdes = q0 + at, (5)

where q0 is default joint positions. Then, the desired joint
positions are converted into torque commands directly by the
PD controller on the motor driver with fixed gain and zero
desired joint velocities:

τ des = kp(qdes − q)− kdq̇ (6)

The policy operates at a rate of 50 Hz, while the internal PD
controller runs at a higher frequency, improving stability of
the policy on the real robot compared to making the policy
directly output torque.

3) Reward Function: Designing proper reward functions
is important for obtaining desired behaviors for robots. We
define the reward function as the weighted summation of
several reward components:

r(st,at) =
∑

wiri (7)

The reward function consists of three parts: tracking rewards,
gait rewards, and regularization rewards.

To enable the robot to move in a specified manner, we
define a torso velocity tracking reward. Additionally, we

TABLE II: Summary of Reward Function.

Components Equations Weights

Survival 1 0.025
Velocity tracking (x) exp(−(vcmd

x − vx)2/σx) 1.0
Velocity tracking (y) exp(−(vcmd

y − vy)2/σy) 1.0
Velocity tracking (yaw) exp(−(ωcmd

z − ωz)2/σx) 0.5
Base height (hdes − h)2 −20.0
Orientation ∥g∥2 −5.0

Torque ∥τ∥2 −2× 10−4

Torque tiredness ∥τ/τmax∥2 −1× 10−2

Power max(τ · q̇, 0) −2× 10−4

Lin velocity (z) v2z −2.0
Ang velocity (xy) ∥ωxy∥2 −0.2
Joint velocity ∥q̇∥2 −1× 10−4

Joint acceleration ∥q̈∥2 −1× 10−7

Base acceleration ∥v̇∥2 + ∥ω̇∥2 −1× 10−4

Action rate ∥at − at−1∥2 −1.0
Joint position limit 1q>qmax

+ 1q<qmin
−1.0

Collision ncollision −1.0

Feet swing 1feet swing · 1swing period 3.0
Feet slip 1feet stance · ∥vfeet∥2 −0.1
Feet yaw ∥ψfeet − ψbase∥2 −1.0
Feet roll ∥ϕfeet∥2 −0.1
Feet distance max(dref − dfeet, 0) −1.0

implement curriculum learning to progressively increase the
magnitude of velocity commands, allowing the robot to learn
walking more quickly. Commands for each environment
are resampled within a random time window, and with a
certain probability, the command is set to “stand still” to
encourage the robot to learn transitions between standing and
walking, as well as adjustments to different walking speeds.
During training, when the command changes, we truncate
the sequence to prevent the robot from making unrealistic
predictions that could affect tracking performance.

For humanoid robot locomotion tasks, a gait reward is
designed to encourage leg movement. We define a reference
gait cycle and reward the robot for stepping with both legs
according to the set cycle. Due to the simplified collision
estimation in Isaac Gym, we use the difference in height
between the foot and the ground, rather than foot contact
forces, to determine whether the robot is lifting its leg.

Additionally, we define penalties for torso posture, energy
consumption, and regularization terms to improve overall
performance. For a detailed breakdown of the reward func-
tion settings, please refer to the table.

4) Episode Design: The maximum episode duration is
set to 1500 steps, equivalent to 30 s. The environment
is reset when time limit is exceeded, but the subsequent
rewards will be filled in the GAE. To prevent the agent from
wasting time exploring ineffective states, such as when the
robot has fallen, we implement additional early termination
conditions, including excessively low base height or base
velocity exceeds a threshold. Under these conditions, the
environment is reset without granting subsequent rewards,
thereby preventing the robot from falling or exhibiting ex-
treme behaviors. Furthermore, the total reward for each frame
is clipped to zero to avoid incentivizing early termination
with negative rewards.

C. Bridging the Sim-to-Real Gap

Due to the limitations of real-world data collection in
terms of efficiency and safety, reinforcement learning (RL)
typically trains policies in simulation and deploys them in
the real world with zero-shot transfer. However, the sim-to-
real gap arises from the idealized assumptions in simulation,
which fail to account for real-world uncertainties such as sen-
sor noise, actuator dynamics, and environmental variations.

To address the sim-to-real gap, we leverage domain ran-
domization to bridge the disparity between simulation and
real-world deployment. For humanoid locomotion, we cate-
gorize these uncertainties into three primary sources: robot
body dynamics, actuator characteristics, and environmental
conditions. By applying domain randomization to each of
these categories during simulation training, we enable the
policy to adapt to a wide range of real-world scenarios.

Specifically, we randomize the mass and center of mass
(CoM) positions of the trunk and other links, while intro-
ducing noise in observations to account for variations in
the robot’s physical properties. To mimic real-world actuator
behaviors, we introduce randomization in joint stiffness,
damping, and friction, as well as communication delays.
Additionally, we simulate diverse terrains and randomize
contact properties such as friction, compliance, and restitu-
tion to reflect environmental variations. To further enhance
robustness, we randomly apply external disturbances, in-
cluding kicks and pushes, by simulating sudden changes in
velocity or applying forces over time. These disturbances
help the policy adapt to unexpected real-world challenges,
such as recovering from external impacts. Through these
comprehensive strategies, our framework achieves robust
sim-to-real transfer, allowing humanoid robots to perform
complex locomotion tasks in diverse real-world environments
with adaptation to different robot configurations.

D. Deployment

To facilitate the deployment of trained policies onto
physical robots, we develop a Python-based deployment
framework, accompanied by a pre-trained policy, allowing
users to seamlessly implement and evaluate reinforcement
learning (RL) policies on real hardware.

The trained policies are exported in a Just-In-Time (JIT)
compiled format, ensuring efficient execution on the robot’s
onboard CPU. The JIT-optimized policy operates at a fre-
quency of 50 Hz, processing real-time sensor data as input
and generating joint position targets as output, which are then
sent to the motors. The motor’s PD controller is employed
with predefined Kp and Kd gains, while joint velocity
targets and feedforward torque are set to zero, aligning
with the simulation configuration. This approach leverages
the motor’s built-in PD controller to achieve higher control
frequency, rather than implementing a custom solution.

Additionally, we introduce the Booster Robotics SDK, a
developer-focused toolkit that abstracts hardware interfaces,
allowing external programs to interact with the robot through
a unified API. The SDK is built on the Data Distribution
Service (DDS) middleware, providing a Publisher-Subscriber

(a)

(b)

(c)

(d)

Fig. 3: Omnidirectional walking. (a) Forward. (b) Backward.
(c) Rotation. (d) Sideways.

Fig. 4: Walking on a 10-degree slope. Upper: Forward.
Lower: Sideways.

communication model for efficient data exchange. It offers
low-level motor control interfaces and access to sensor data,
such as IMU measurements and joint encoder readings, en-
abling precise and direct interaction of the robot’s hardware.

Parallel structures are a common design choice for hu-
manoid robot ankles, as they help reduce the inertia of the
foot and enhance dynamic performance. In our framework,
we address the challenge of handling closed kinematic
chains in parallel ankle mechanisms by implementing a
series-parallel conversion module in the SDK. This module
allows users to seamlessly train policies using a virtual
serial structure, which is more computationally efficient and
widely supported by current GPU-based physics engines,
while enabling deployment on parallel mechanisms without
additional complexity. Specifically, the module calculates
position and velocity feedback for the virtual series joints
using the robot’s kinematic model and dynamically converts
the policy outputs from the series model to the parallel
structure using a transposed Jacobian matrix and a PD
controller. This approach reduces the sim-to-real gap and
simplifies deployment, ensuring smooth and accurate control.

IV. EXPERIMENT

In this section, we evaluate the performance of poli-
cies trained using our proposed framework across a range

Fig. 5: Walking on different types of terrains with the same
policy.

Fig. 6: Push Recovery. A 10-kg ball impacts the robot during
stepping in place. The robot regains a stable gait within a
few steps after the disturbance.

of humanoid locomotion tasks by deploying them on the
Booster T1 robot in real-world scenarios. The experiments
are designed to assess key capabilities, including omnidi-
rectional walking, adaptability to diverse terrains, robustness
to external disturbances, and the effectiveness of sim-to-real
transfer.

A. Omnidirectional Walking Performance

In this work, we focus on omnidirectional walking, the
fundamental locomotion capability of humanoid robots, us-
ing a basic RL framework. We train the robot to follow
linear velocity commands in the x and y directions and
angular velocity commands in the yaw direction, issued via
a joystick. The robot is rewarded for accurately tracking
these velocity commands, promoting the development of
omnidirectional movement.

As shown in Fig. 3, we demonstrate the robot’s abil-
ity to perform omnidirectional walking, including forward,
backward, sideways, and rotational movements. The robot
effectively tracks both single-direction and mixed-direction
commands, as well as commands that change over time.
These results highlight the effectiveness of our framework
in handling fundamental locomotion tasks.

B. Walking on Diverse Terrains and Under Disturbances

In this experiment, we evaluate the robustness of our
policy by testing its performance across a variety of terrains
and in the presence of external disturbances. As illustrated in
Fig. 4, the trained policy enables stable locomotion on mul-
tiple surfaces, including grass, stone pathways, soil, asphalt,

1.00 0.75 0.50 0.25 0.00
Position

2

0

2

Ve
lo

cit
y

Left Hip Pitch

0.05 0.10 0.15
Position

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ve
lo

cit
y

Left Hip Roll

0.05 0.00 0.05 0.10
Position

1.5

1.0

0.5

0.0

0.5

1.0

Ve
lo

cit
y

Left Hip Yaw

0.50 0.75 1.00 1.25
Position

5.0

2.5

0.0

2.5

5.0

Ve
lo

cit
y

Left Knee Pitch

0.6 0.4 0.2
Position

10

5

0

5

10

15

Ve
lo

cit
y

Left Ankle Pitch

0.2 0.1 0.0
Position

5

0

5

10

15

Ve
lo

cit
y

Left Ankle Roll

0.75 0.50 0.25 0.00
Position

2

0

2

Ve
lo

cit
y

Right Hip Pitch

0.10 0.05 0.00 0.05
Position

1

0

1

2
Ve

lo
cit

y
Right Hip Roll

0.05 0.10 0.15 0.20
Position

1

0

1

Ve
lo

cit
y

Right Hip Yaw

0.50 0.75 1.00 1.25
Position

7.5

5.0

2.5

0.0

2.5

5.0

Ve
lo

cit
y

Right Knee Pitch

0.6 0.4 0.2
Position

10

5

0

5

10

15

Ve
lo

cit
y

Right Ankle Pitch

0.0 0.1 0.2
Position

10

5

0

5

Ve
lo

cit
y

Right Ankle Roll

Real
MuJoCo
Isaac Gym

Fig. 7: Joint position-velocity trajectories with a 0.5 m/s forward velocity commands in Isaac Gym, MuJoCo, and real-world
deployment. The Isaac Gym trajectories represent results from 10 distinct environments sampled under domain randomization.

concrete, tiled floors. Notably, the policy demonstrates strong
adaptability, even on challenging terrains. For instance, we
construct a 10-degree slope, and the robot successfully
performs forward, backward, and turning motions while
adapting to step transitions, despite lacking explicit terrain
perception.

We also assess the policy’s resilience to external distur-
bances, simulating unexpected collisions the robot might
encounter in real-world environments. This is tested through
two scenarios: impulsive impacts and sustained forces. We
introduce an instantaneous impact by dropping a 10 kg
weight from a distance of 1 m while the robot is stepping
in place. As shown in Fig. 6, the impact causes significant
displacement of the robot’s torso. However, the policy swiftly
responds by adjusting the foot placement, allowing the robot
to regain stability within a few steps. Additionally, we test
the robot’s ability to withstand continuous external forces
during forward motion. When an external force impedes
its movement, the robot maintains stability and promptly
resumes movement upon force removal.

While employing basic RL methods, our framework
achieves notable real-world adaptability through carefully
designed environmental variations in training. These results
further highlight the robustness of the policy in handling
real-world challenges.

C. Sim-to-Real Transfer

To address the sim-to-real transfer challenges in humanoid
robots, we systematically quantify the dynamics gap between
simulation and physical deployment, while adjusting our
training setup accordingly. Fig. 7 illustrates joint position-
velocity trajectories during 10-second walking with a 0.5
m/s forward velocity command. By comparing results from
training in Isaac Gym and the deployment in real world,
we demonstrate that our carefully designed domain random-
ization effectively covers real-world properties and bridges
the sim-to-real gap, enabling zero-shot policy transfer to
physical robots. Additionally, cross-simulation results from
MuJoCo indicate that the MuJoCo environment serves as

Fig. 8: Joint position response to a 0.1 rad step command
during the latency test. The joint position trajectories show
the feedback reception times relative to the command publi-
cation times, with the step command applied at t = 0.

an effective testing platform that closely approximates real-
world dynamics. Its lightweight, cross-platform nature allows
for rapid policy validation while maintaining consistency
with physical robot performance.

To enhance sim-to-real alignment, we quantitatively quan-
tify critical real-world parameters for domain randomization.
For instance, we measure communication latency by sending
joint commands and reading joint position feedback via
Python SDK on the robot’s onboard CPU. As shown in Fig.
8, our measurements indicate a round-trip communication
latency of 9-12 ms from command transmission to the initial
observed change in joint position. Additionally, we measure
that the policy inference time is less than 1 ms. To better
replicate these real-world temporal characteristics, we incor-
porate sensor-to-actuator latency randomization ranging from
0-20 ms during training in simulation. These quantified re-
finements ensure that our training scenarios comprehensively
cover real-world dynamics. The synergistic implementation
of these technical enhancements facilitates successful zero-
shot policy transfer.

V. CONCLUSIONS

In this work, we introduce Booster Gym, an end-to-
end reinforcement learning framework for humanoid robot
locomotion that provides a complete pipeline from training
to deployment with zero-shot sim-to-real transfer capabili-
ties. Through the integration of carefully designed domain
randomization techniques and environment configurations,
the framework enables robust policy generalization across
diverse terrains and conditions, demonstrating its practical-
ity for real-world deployment. As an open-source solution,
Booster Gym aims to lower the barrier for developing
customized locomotion strategies and to foster community-
driven innovation in humanoid robotics.

ACKNOWLEGEMENT

The development of Booster Gym draws inspiration from
several open-source repositories, including IsaacGymEnvs
[13], legged gym [14], rsl rl, and humanoid-gym
[17]. These resources were referenced throughout the imple-
mentation process to enhance the design of our framework.

REFERENCES

[1] Q. Li, Y. Pang, W. Cai, Y. Wang, Q. Li, and M. Zhao, “An overview
of multi-task control for redundant robot based on quadratic program-
ming,” in Chinese Intelligent Automation Conference. Springer, 2023,
pp. 641–666.

[2] C. Khazoom, S. Hong, M. Chignoli, E. Stanger-Jones, and S. Kim,
“Tailoring solution accuracy for fast whole-body model predictive
control of legged robots,” IEEE Robotics and Automation Letters,
2024.

[3] P. Chen, Y. Wang, C. Luo, W. Cai, and M. Zhao, “Hifar: Multi-stage
curriculum learning for high-dynamics humanoid fall recovery,” arXiv
preprint arXiv:2502.20061, 2025.

[4] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and
K. Sreenath, “Real-world humanoid locomotion with reinforcement
learning,” Science Robotics, vol. 9, no. 89, p. eadi9579, 2024.

[5] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[6] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
8973–8979.

[7] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[8] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[9] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik, “Adapt-
ing rapid motor adaptation for bipedal robots,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 1161–1168.

[10] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Reinforcement learning for versatile, dynamic, and robust bipedal
locomotion control,” The International Journal of Robotics Research,
p. 02783649241285161, 2024.

[11] X. Gu, Y.-J. Wang, X. Zhu, C. Shi, Y. Guo, Y. Liu, and J. Chen, “Ad-
vancing humanoid locomotion: Mastering challenging terrains with
denoising world model learning,” arXiv preprint arXiv:2408.14472,
2024.

[12] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[13] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[14] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[15] K. Zakka, B. Tabanpour, Q. Liao, M. Haiderbhai, S. Holt, J. Y.
Luo, A. Allshire, E. Frey, K. Sreenath, L. A. Kahrs et al., “Mujoco
playground,” arXiv preprint arXiv:2502.08844, 2025.

[16] G. Authors, “Genesis: A universal and generative physics engine
for robotics and beyond,” December 2024. [Online]. Available:
https://github.com/Genesis-Embodied-AI/Genesis

[17] X. Gu, Y.-J. Wang, and J. Chen, “Humanoid-gym: Reinforcement
learning for humanoid robot with zero-shot sim2real transfer,” arXiv
preprint arXiv:2404.05695, 2024.

[18] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric actor critic for image-based robot learning,” arXiv
preprint arXiv:1710.06542, 2017.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[20] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[21] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7309–7315.

https://github.com/isaac-sim/IsaacGymEnvs
https://github.com/leggedrobotics/legged_gym
https://github.com/leggedrobotics/rsl_rl
https://github.com/roboterax/humanoid-gym
https://github.com/Genesis-Embodied-AI/Genesis

	Introduction
	Related Works
	Humanoid Locomotion Control
	Tools for Humanoid Learning and Simulation

	Method
	Reinforcement Learning Formulation
	Problem Setup
	Observation Space
	Action Space
	Reward Function
	Episode Design

	Bridging the Sim-to-Real Gap
	Deployment

	Experiment
	Omnidirectional Walking Performance
	Walking on Diverse Terrains and Under Disturbances
	Sim-to-Real Transfer

	Conclusions
	References

